

FOOD QUALITY AND SAFETY

All foods should be safe and free from contaminants (biological, chemical and physical) from raw materials and processing to distribution and storage until they reach the consumers.

BIOLOGICAL CONTAMINATION AND FOOD DETERIORATION

Food preservation

The microbiological safety and stability as well as the sensory and the nutritional quality of foods is based on an application of preservative methods, called **hurdles**.

Example of TRADITIONAL HURDLES

Temperature:

-High: pasteurization, sterilization. -Low: refrigeration, freezing.

Water activity: drying, curing, salting, sugaring.

Acidity: adding or formation of acids (e.g. acetic, phosphoric, propionic).

Redox potential: addition of ascorbate, vacuum packaging.

Preservatives: sorbates, nitrites, sulfites.

Hurdle technology

Hurdle technology is defined as an **intelligent combination of hurdles** that secures the microbial safety and stability as well as the organoleptic and nutritional quality of food products (Leistner, 2000. International Journal of Food Microbiology, 55, 181-186)

HURDLE TECHNOLOGY: A FOCUS ON THE CHANCE FROM BACTERIA

BIOPRESERVATION:

use of **natural or added microorganisms** and/or **their metabolites** as a way of **food safety** improving and **shelf life** extension.

FIGHTING

MICROBES

WITH

MICROBES

A SUBFOCUS ON THE CHANCE FROM BACTERIOCINS

Bacteriocins are **biologically active peptides** with **antimicrobial activity against a wide range of bacteria**. The term "bacteriocins" was coined in 1953 to define colicin produced by *Escherichia coli*.

USE OF BACTERIOCIN-PRODUCING LAB IN THE BIOPRESERVATION OF FOODS								
	PRODUCT	MICROORGANISM	TARGET PATHOGENIC MICROORGANISM					
Meat products								
•	Italian-type salami	Lactobacillus plantarum	Listeria monocytogenes					
•	Turkey summer sausages	Pediococcus acidilactici	Listeria monocytogenes					
•	Comminutes cured pork	Lactobacillus sakei Lb 706	Listeria monocytogenes					
•	Vacuum-packaged frankfurters	Pediococcus acidilactici JD1-23	Listeria monocytogenes					
•	Vacuum-packaged wieners	Pediococcus acidilactici JBL 1095	Listeria monocytogenes					
Dairy products								
•	Taleggio cheese	Enterococcus faecium 7C5	Listeria monocytogenes					
•	Cheddar cheese	Lactococcus lactis subsp. cremoris JS102	Spores of Clostridium sporogenes					
Vegetable-type foods								
•	Green-olive fermentation	Lactobacillus plantarum LPC010	Indigenous lactobacilli					
•	Ready-to-use mixed salads	Lactobacillus casei	Spoilage-associated microflora					
•	Sourdough	Lactobacillus plantarum LM025	Bacillus subtilis					

	USE OF BACTERIOCINS IN BIOPRESERVATION OF FOODS						
	PRODUCT	BACTERIOCIN		IN	TARGET MICROORGANISM		
	Vacuum-pakaged beef	Pediocin AcH, nisin			Leuconostoc mesenteroides		
Recognized as safe	Brined shrimps	Carnocin UI49, nisin Z, bavaricin A		bavaricin A	Spoilage Bacteria		
by FAO/WHO and	Ricotta cheese		Nisin		Listeria monocytogenes		
Expert Commitee —	Bologna type sausage		Nisin		Brochothrix thermosphacta		
on Food Additives	Skinm milk		Nisin		Bacillus cereus		
	Cotta cheese		Nisin		Listeria monocytogenes		
	Canned foods		Nisin		Clostridium botulinum		

Microencapsulation

MICROENCAPSULATION IS A TECHNIQUE THAT ALLOWS SENSITIVE INGREDIENTS TO BE PHYSICALLY ENTRAPPED IN HOMOGENEOUS OR HETEROGENEOUS MATRIX.

Why microencapsulate nisin?

-Protection from rapid inactivation or degradation by proteolytic enzymes.

-Stability by limiting their interaction by binds with food components resulting in reduced availability to act against microorganisms in food matrices.

-Controlled release in space and in time.

Microencapsulated nisin: case study

Active packaging is one of the innovative food packaging concepts that have been introduced as a response to demands of consumers for high quality, safety and extended shelf life of food products.

Antimicrobial packaging system is a hurdle to prevent degradation of quality of packaged food providing protection against microorganisms. It allows a controlled release of antimicrobial agent into the food matrix during storage and distribution.

Antimicrobial packaging Activation of films with microencapsulated nisin: a laboratory scale application

ANTIMICROBIAL PLASTIC FILM BY USING FREE NISIN

Food Bioprocess Technol (2013) 6:2770-2779 DOI 10.1007/s11947-012-0902-x

ORIGINAL PAPER

Journal of Food Protection, Vol. 76, No. 1, 2013, Pages 52–58 doi:10.4315/0362-028X.JFP-12-257 Copyright @, International Association for Food Protection

Coating-Activation and Antimicrol Polyethylene Films with a Nisin-Ba

Antonietta La Storia · Gianluigi Mauriello · Francesco Villani · Danilo Ercolini

Antimicrobial Packaging To Retard the Growth of Spoilage Bacteria and To Reduce the Release of Volatile Metabolites in Meat Stored under Vacuum at 1°C

ILARIO FERROCINO, ANTONIETTA LA STORIA, ELENA TORRIERI, SALVATORE SPAGNA MUSSO, GIANLUIGI MAURIELLO, FRANCESCO VILLANI, AND DANILO ERCOLINI*

JFS T: Toxicology and Chemical Food Safety

Letters in Applied Microbiology 2005, 41, 464-469

Characterization of Bacteriocin-Coated

al Polyethylene Films orce Microscopy

MARINELLO, AND G. MAURIELLO

G. Mauriello, E. De Luca, A. La Storia, F. Villani and D. Ercolini Dipartimento di Scienza degli Alimenti Università degli Studi di Napoli 'Federico II', 80055 Portici, Naples, Italy

i

nisin activated plastic film

ANTIMICROBIAL ACTIVITY OF PLASTIC FILMS ACTIVATED WITH: FREE NISIN MICROENCAPSULATED NISIN

Antimicrobial packaging Activation of films with microencapsulated nisin: a laboratory scale application

BACTERICIDAL ACTIVITY OF ANTIMICROBIAL PACKAGING

THANKS FOR YOUR ATTENTION